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Abstract. The number of rook arrangements on the Sierpinski lattice is presented as a set of
recurrence formulae. The upper and lower bounds of this number are also found.

1. Introduction

Rook problem [4–8] is one of the enumerative problems of counting the number of different
arrangements of rooks on a lattice under the restriction that rooks cannot attack each other.
The most famous eight-Queens (orN -Queens) problem has been attracting interest for many
years, but its solution has not been found [1, 2]. Here we present a solution of the rook
problem on the Sierpinski lattice (see figure 1) which is a fractal lattice [3]. Some fractal
lattices can be constructed by a recursive operation from a primary lattice. For example,
Dragon curve, Koch’s snowflake curve, etc [3]. We denote the Sierpinski lattices byE(n),
wheren denotes the number of times the recursive operation is applied. A primary lattice
is denoted byE(1) in figure 1.

Our rook-arrangements obey the following three rules.
(i) Each rook is on a different site which is an intersection of line segments.
(ii) If a rook is on a site of a line, it can go to any site of the line by one move.
(iii) No rook can attack any others by one move.
Then, our problem is‘How many arrangements of rooks are there onE(n) under the

above rules?’, and we solve it for the case of the Sierpinski lattice.
Throughout this paper, the number of arrangements is denoted byC(n) corresponding

to the latticeE(n). We show four arrangements of rooks in figure 1, where a full circle on
a site indicates a rook. The first three examples are allowed under our rules, but the fourth
one is not allowed.

2. On the Sierpinski lattice

Theorem 1.The rook arrangements-numberC(n) on the Sierpinski latticeE(n) is given by

C(n) = C0(n)+ 3C1(n)+ 3C2(n)+ C3(n) = 4C̃0(n)+ 6C̃1(n)+ 3C̃2(n)+ C̃3(n) (1)
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Figure 1. Examples of the rook-arrangement on the Sierpinski latticesE(1), E(2), E(3) and
E(2). The full circles are rooks. The first three configurations (a)–(c) are allowed, but the last
one (d) is forbidden.

whereC̃0(n), . . . , C̃3(n) obeys the following recurrence equations

C̃0(n+ 1) = C̃0
3
(n)+ 3C̃0

2
(n)C̃1(n)+ 3C̃0(n)C̃1

2
(n)+ C̃1

3
(n)

C̃1(n+ 1) = C̃0
3
(n)+ 3C̃0

2
(n)C̃1(n)+ 4C̃0(n)C̃1

2
(n)+ 2C̃1

3
(n)

+2C̃0
2
(n)C̃2(n)+ 4C̃0(n)C̃1(n)C̃2(n)+ 2C̃1

2
(n)C̃2(n)

C̃2(n+ 1) = 4C̃0
2
(n)C̃1(n)+ 5C̃0(n)C̃1

2
(n)+ 3C̃1

3
(n)+ 3C̃0

2
(n)C̃2(n)

+8C̃0(n)C̃1(n)C̃2(n)+ 7C̃1
2
(n)C̃2(n)+ 3C̃0(n)C̃2

2
(n)

+3C̃1(n)C̃2
2
(n)+ C̃0

2
(n)C̃3(n)+ 2C̃0(n)C̃1(n)C̃3(n)

+C̃1
2
(n)C̃3(n)

C̃3(n+ 1) = 9C̃0(n)C̃1
2
(n)+ 5C̃1

3
(n)+ 3C̃0

2
(n)C̃2(n)+ 12̃C0(n)C̃1(n)C̃2(n)

+12̃C1
2
(n)C̃2(n)+ 6C̃0(n)C̃2

2
(n)+ 12̃C1(n)C̃2

2
(n)+ 2C̃2

3
(n)

+3C̃0
2
(n)C̃3(n)+ 6C̃0(n)C̃1(n)C̃3(n)+ 6C̃1

2
(n)C̃3(n)

+6C̃0(n)C̃2(n)C̃3(n)+ 6C̃1(n)C̃2(n)C̃3(n) (2)

and the initial condition of these recursive equations is given by

C̃0(1) = C̃1(1) = 1 C̃2(1) = C̃3(1) = 0. (3)

SymbolsCi(n) and C̃i(n), (i = 0, 1, 2, 3) denote the number of the rook-arrangements
for the corresponding modified lattices introduced in the proof of the theorem.

Before going to the proof, we check the simplest case for the primary latticeE(1).
As shown in figure 2, there is one arrangement with no rook (we should count the no
rook case every time). There are six different arrangements with one rook, sinceE(1)
has six sites. Two rooks can be put onE(1) by three different configurations. We cannot
put three or more rooks on this lattice under our rule. Consequently the numberC(1) is
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Figure 2. Ten rook-arrangements on the primary Sierpinski latticeE(1). One no-rook case, six
one-rook cases and three two-rooks cases. The symbols under each figure indicate which type
each arrangement belongs to. The symbols are explained in the proof of theorem 1.

E0(n)~

E3(n)~
E2(n)~

E1(n)~

Figure 3. Ẽi (n) for i = 0, 1, 2, 3. The outer bold line has a rook on it.

1+ 6+ 3= 10. This result agrees with that of theorem 1. From equations (1) and (3), we
haveC(1) = 4× 1+ 6× 1+ 3× 0+ 0= 10.

Proof of theorem 1.We introduce a modified lattice by removing three vertices of the largest
triangle of the original latticeE(n), as shown in figure 3. We call this modified latticẽE(n).
We use a tilde to indicate this modified lattice.

The latticeẼ(n) is classified into four types depending on how the rooks are put on its
three outer lines as follows.

Ẽ0: No rook is on any site of outer three lines.
Ẽ1: One rook is on a site of one outer line and other two lines have no rook.
Ẽ2: Two rooks are on an each site of two outer lines respectively. The third outer line
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has no rook.
Ẽ3: Three rooks are on an each site of three outer lines respectively.

There is no other type of lattice under the rook condition such that each outer line has at
most one rook. Thus we havẽE = Ẽ0+ 3Ẽ1+ 3Ẽ2+ Ẽ3, here the factor 3 for̃E1 andẼ2

comes from the symmetry of their lattices. The corresponding rook-arrangements number
is denoted bỹCi(n) for Ẽi(n) with i = 0, 1, 2, 3.

Proof of equation (2).First, we show that̃C0(n+ 1) is given by

C̃0(n+ 1) = C̃0
3
(n)+ 3C̃0

2
(n)C̃1(n)+ 3C̃0(n)C̃1

2
(n)+ C̃1

3
(n). (4)

The reason is shown graphically below.̃E0(n+ 1) is constructed by threẽE(n),

= + 3× ++ 3×

(5)

Here the plain line means that no rook is on any site of this line, the bold line means that
a rook is on a some site of this line and the broken line means either of the two cases.

The second term on the right-hand side of equation (5) is constructed by twoẼ0(n) and
one Ẽ1(n) as

= C (n) C (n)
2

0 1

~ ~
=

E0
~

E1
~

E0
~

. (6)

Here we should take care to ensure thatẼ1(n) cannot be replaced with a rotated one. We
can place a bottom-bold̃E1(n) at the top triangle of̃E0(n + 1), or a left-bold one at the
right, or a right-bold one at the left. These three cases are taken into account by the factor 3
for the second term in equation (5).

Other terms of equation (4) are estimated similarly. The first term of equation (5) is
constructed by threẽE0, the third term is by onẽE0 and twoẼ1, the fourth term is by three
Ẽ1. Then we obtain equation (4).

Next we consider̃C1(n + 1). Let us divideC̃1(n + 1) into two cases̃C1
′
(n + 1) and

C̃1
′′
(n + 1), the former has a rook on a centre site of the left outer line ofẼ1(n + 1) and

the latter has a rook on the remaining some site of the left outer line. Thus we find

=  +  2

  C1(n+1)     =     C’1(n+1)    +  2 C"1(n+1)
~ ~~

. (7)

Similarly in equations (5) and (6), the number̃C1
′
(n+ 1) is given by

C̃1
′
(n+ 1) = C̃0

3
(n)+ C̃0

2
(n)C̃1(n) (8)

and the number̃C1
′′
(n+ 1) is given by

C̃1
′′
(n+ 1) = C̃0

2
(n)C̃1(n)+ 2C̃0(n)C̃1

2
(n)+ C̃1

3
(n)+ C̃0

2
(n)C̃2(n)

+2C̃0(n)C̃1(n)C̃2(n)+ C̃1
2
(n)C̃2(n). (9)
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With (7)–(9), we find the second equation in (2).
The numbers̃C2(n + 1) and C̃3(n + 1) can be derived by using similar arguments to

the above. Then, we have the set of recurrence equations (2) in theorem 1. �

Proof of equation (3). As shown in figure 2, the number for the primary lattices̃Ei(1)
denoted byC̃i(1), i = 0, 1, 2, 3 are given by

C̃0(1) = C̃1(1) = 1 C̃2(1) = C̃3(1) = 0 (10)

since theẼ(1) lattice only has three sites (̃E(1) does not have outer three vertices) and this
lattice has at most one rook. This is the initial condition of the recurrence equations (3) in
theorem 1. �

Proof of equation (1).To return to the original latticeE(n), we restore three vertices which
were removed at the beginning of the proof tõE(n) lattice. The original lattice is also
classified into four types as similarly as̃E(n) lattice.

E0: No rook is on any site of outer three lines.
E1: One rook is on any site of one outer line and other two lines have no rook.
E2: Two outer lines are occupied by one or two rooks. One outer line is not.
E3: All three outer lines are occupied.

We setCi(n) be the number of rook-arrangements ofEi(n) lattice, wherei = 0, 1, 2, 3.
E0 andE1 are defined to be the same as̃E0 and Ẽ1, respectively, butE2 andE3 are

different. This difference comes from whether the added vertices are occupied by a rook
or not. The relation betweenEi and Ẽi are shown in figure 4.E0 andE1 have no rook
on the outer vertices. A rook on an added outer vertex occupies two outer lines ofE(n)

and then this type of the configuration belongs toE2(n) or E3(n). Only one rook can be
put on one of the three vertices.E2(n) has one rook on a vertex or has two rooks on the
two outer lines. The number of the former case is̃C0(n) and the number of the latter case
is C̃2(n). E3(n) has one rook on a vertex and one rook on the line opposite to this vertex
(3C̃1(n)) or it has three rooks on three outer lines (C̃3(n)). Then we have

C0(n) = C̃0(n) C1(n) = C̃1(n)

C2(n) = C̃0(n)+ C̃2(n) C3(n) = 3C̃1(n)+ C̃3(n). (11)

Finally, taking account of the symmetry of the configuration, we have the number of
the rook-arrangementC(n) by

C(n) = C0(n)+ 3C1(n)+ 3C2(n)+ C3(n). (12)

With equations (11) and (12), we arrived at equation (1) of theorem 1. �

The numbersC(n) for n = 1, 2, . . . ,7 are given in table 1.

3. Upper and lower bounds

We have an upper bound and a lower bound ofC(n).

Theorem 2.The number of the rook arrangements is bounded as

103n > C(n) > 602
n−1

2
/6 (13)

wheren is assumed to be odd.
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Figure 4. The relation betweeñEi andEi for i = 0, 1, 2, 3.

Table 1. The number of rook arrangementsC(n) for small n.

n C(n)

1 10
2 142
3 340568
4 2582700948625408
5 356343978551223717661953923801022722973106176
6 1905353318182952468259652553125739730162277424356212171492677368211762

7336474444859199889941609510226859141124824224813142769664000
7 4612663800978825897597481066193343647160936051992368347266393888999005

7614196370380224152346528099661255070309544062430172984361069480567193
5933682124305560247111933579692120775011517869773314297619464237103929
3708464147088719594619409394203939113543717368099359942064435941712709
2003304387267516560537371224651156925919221629088900480063886298360384

003462173202117525591862280192000000000000

Proof of theorem 2.It is easily seen from figure 5 thatC(n) < C3(n − 1), because three
E(n − 1) overlap each other. Some rook-configurations are forbidden inE(n) but are
allowed in three independentE(n−1) configurations. By solving this recurrence inequality
equation, we haveC(n) < 103n .

Since we can place twoE(n− 2) without any overlapping we obtain a lower bound of
C(n) in the same manner thatC(n) > 6C2(n− 2). The factor of 6 comes from the number
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C(n) > 6C (n-2)
2

C(n) < C (n-1)
3

E(n-1)

E(n-2)E(n-1)

E(n-1) E(n-2)

(a) (b)

Figure 5. (a) Upper and (b) lower bounds. There is no rook in the areas without shade.

of ways of placing twoE(n− 2) without overlapping. Consequently, we found thatC(n)

grows double exponentially asn increases. �

By applying the least square method to the data ofC(1), . . . , C(7) in table 1, we
estimateC(n) as

log logC(n) ' 1.054n− 0.5172. (14)

It is interesting that the upper bound in equation (13) is a good approximate value for
equation (14), i.e.

log log 103n = n log 3+ log log 10' 1.0986n+ 0.8340. (15)

How fast does the valueC(n) grows in comparison with other lattices? We consider a
square chess board whose size is 2n × 2n. This lattice is a special case of fractal lattice.
The number of rook-arrangementsC(n) of this lattice is given by

Cc(n) =
2n∑
k=0

(2n!)2

(2n − k)!(k!)2
. (16)

It is obvious that

2n+1!

(2n!)2
=

2n∑
k=0

{
(2n!)

(2n − k)!k!

}2

< Cc(n) <

2n∑
k=0

(2n!)2

(2n − k)! = 22n2n!. (17)

Thus we have the leading term as

log logCc(n) ' n log 2' 0.6931n. (18)

Comparing equations (14) and (18), we conclude that the valueC(n) of the Sierpinski
lattice grows faster than that of the square chess board.

4. Summary and discussion

This paper provides a set of recurrence equations for the rook-arrangements numberC(n)

for the Sierpinski lattice. We also find the upper and the lower bounds of it. From these
bounds, we proved that this numberC(n) grows double exponentially asn increases. The
obtained recurrence equations (2) have not been solved analytically yet.

There are remaining problems. How many rook arrangements are there when we cannot
put any more rooks at any sites? This should be called the fourth rule. An example allowed
under the four rules is shown in figure 6. We cannot add any rook to this configuration.
The originalN -Queen problem obeys these four rules.
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Figure 6. An example rook configurations forE(3). No more rooks can be put on any site.

Recently, Chalubet al [9] used a similar recursive method to the self-avoiding-walk
problem on an extended Sierpinski lattice and discussed the limit of the Euclidean lattice.
Their method is an interesting approach to solving the originalN -Queen problem.
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